初二數學平方根知識點
初二數學平方根知識點
初中生學習數學整理重點知識點是非常必要的,下面是小編幫大家整理的初二數學平方根知識點,僅供參考,大家一起來看看吧。
【資料圖】
初二數學平方根知識點 篇1
一個正數如果有平方根,那么必定有兩個,它們互為相反數。顯然,如果我們知道了這兩個平方根的一個,那么就可以及時的根據相反數的概念得到它的另一個平方根。
如果一個數的平方等于a,那么這個數叫做a的平方根。0的平方根是0。負數在實數范圍內不能開平方,只有在正數范圍內,才可以開平方根。例如:—1的平方根為i,—9的平方根為3i。
平方根包含了算術平方根,算術平方根是平方根中的一種。
平方根和算術平方根都只有非負數才有。
被開方數是乘方運算里的冪。
求平方根可通過逆運算平方來求。
開平方:求一個非負數a的平方根的運算叫做開平方,其中a叫做被開方數。
總結:一個正數有兩個平方根;0只有一個平方根,就是0本身;負數沒有平方根。
初二數學平方根知識點 篇2
算術平方根的雙重非負性
1。√a中a≧0
2。√a≧0
算術平方根產生 根號(即算術平方根)的產生源于正方形的對角線長度“根號二”,這個 “根號二”的發現 一度引起了畢達哥拉斯學派的恐慌。因為按當時的權威解釋(也就是畢達哥拉斯學派的學說),世界的一切事物都可以用有理數代表。
對于這個無理數“根號二”,最終人們選取了用根號來表示
算術平方根舉例
9的平方根為±3 ;9的算術平方根為3,正數的平方根都是前面加±,算術平方根全部都是正數。
算術平方根辨析
算術平方根和平方根是大家學習實數接觸最多的概念,兩者密不可分。可對于初學者來說是對“孿生殺手”,很容易在解題過程中產生錯誤。算術平方根和平方根到底有哪些區別與聯系呢?
一、 兩者區別
1、定義不同:⑴一般地,如果一個正數x的平方等于a,即x2=a,那么這個正數x叫做a的算術平方根(arithmetic square root)。⑵一般地,如果一個數的平方等于a,那么這個數叫做a的平方根或二次方根(square root)。這就是說,如果x2=a,那么x叫做a的平方根。
2、表示方法不同:⑴a的算術平方根記為√a ,讀作“根號a”,a叫做被開方數(radicand)。⑵a的平方根記為±√a,讀作“正負根號a”,其中a叫做被開方數。
3、個數不同:從形式上看,二者的"符號主體相似,但是一個數的平方根要在其算術平方根的前面寫上“±”。這也正好說明了一個正數和零的算術平方根有且只有一個,而一個正數卻有兩個互為相反數的平方根。零只有一個平方根
二、 兩者聯系
1、前提條件相同:算術平方根和平方根存在的前提條件都是“只有非負數才有算術平方根和平方根”。
2、存在包容關系:平方根包含了算術平方根,因為一個正數的算術平方根只是其兩個平方根中的一個。
3、0的算術平方根和平方根相同,都是0。
初二數學平方根知識點 篇3
一、勾股定理
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。
我國古代把直角三角形中,較短的直角邊叫做“勾”,較長的直角邊叫做“股”,斜邊叫做“弦”。結論為:“勾三股四弦五”。
a2+b2=c2
2221、如果三角形的三邊長a、b、c滿足a+b=c,那么這個三角形是直角三角形。
2222、滿足a+b=c的3個正整數a、b、c稱為勾股數。(例如,3、4、5是一組勾股
數)。利用勾股數可以構造直角三角形。
二、平方根
1、定義——一般地,如果一個數的平方等于a,那么這個數叫做a的平方根,也稱為二次方根。也就是說,如果x2=a,那么x就叫做a的平方根。
2、一個正數有2個平方根,它們互為相反數;0只有一個平方根,它是0本身;負數沒有平方根。
3、求一個數a的平方根的運算,叫做開平方。
4、正數a有兩個平方根,其中正的平方根,也叫做a的算術平方根。
例如:4的平方根是±2,其中2叫做4的算術平方根,記作=2;2的平方根是±其中2的算術平方根。
0只有一個平方根,0的平方根也叫做0的算術平方根
三、立方根
1、定義——一般地,如果一個數的立方等于a,那么這個數叫做a的立方根,也稱為三次方根。也就是說,如果x=a,那么x就叫做a的立方根,數a的立方根記作“,讀作“三次根號a”。
2、求一個數a的立方根的運算,叫做開立方。
3、正數的立方根是正數,負數的立方根是負數,0的立方根是0。
四、實數
1、無限不循環小數稱為無理數。
2、有理數和無理數統稱為實數。
3、每一個實數都可以用數軸上的一個點來表示,反之,數軸上的每一個點都表示一個實數,實數與數軸上的點是一一對應的。
五、近似數與有效數字
1、例如,本冊數學課本約有100千字,這里100是一個近似似數。
2、對一個近似數,從左邊第一個不是0的數字起,到末位數字止,所有的數字都稱為這個近似數的有效數字。
詞條內容僅供參考,如果您需要解決具體問題
(尤其在法律、醫學等領域),建議您咨詢相關領域專業人士。